Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Acta Neuropathol ; 147(1): 60, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526612

RESUMEN

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.


Asunto(s)
Neuropatías Diabéticas , Antagonistas Muscarínicos , Animales , Humanos , Ratones , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/patología , Ácidos Mandélicos , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/uso terapéutico , Calidad de Vida , Receptores Muscarínicos , Diabetes Mellitus Tipo 1
2.
Brain Commun ; 5(2): fcad051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938521

RESUMEN

The dominant sensory phenotype in patients with diabetic polyneuropathy and neuropathic pain is a loss of function. This raises questions as to which mechanisms underlie pain generation in the face of potentially reduced afferent input. One potential mechanism is spinal disinhibition, whereby a loss of spinal inhibition leads to increased ascending nociceptive drive due to amplification of, or a failure to suppress, incoming signals from the periphery. We aimed to explore whether a putative biomarker of spinal disinhibition, impaired rate-dependent depression of the Hoffmann reflex, is associated with a mechanistically appropriate and distinct pain phenotype in patients with painful diabetic neuropathy. In this cross-sectional study, 93 patients with diabetic neuropathy underwent testing of Hoffmann reflex rate-dependent depression and detailed clinical and sensory phenotyping, including quantitative sensory testing. Compared to neuropathic patients without pain, patients with painful diabetic neuropathy had impaired Hoffmann reflex rate-dependent depression at 1, 2 and 3 Hz (P ≤ 0.001). Patients with painful diabetic neuropathy exhibited an overall loss of function profile on quantitative sensory testing. However, within the painful diabetic neuropathy group, cluster analysis showed evidence of greater spinal disinhibition associated with greater mechanical pain sensitivity, relative heat hyperalgesia and higher ratings of spontaneous burning pain. These findings support spinal disinhibition as an important centrally mediated pain amplification mechanism in painful diabetic neuropathy. Furthermore, our analysis indicates an association between spinal disinhibition and a distinct phenotype, arguably akin to hyperpathia, with combined loss and relative gain of function leading to increasing nociceptive drive.

3.
Nature ; 614(7946): 118-124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697822

RESUMEN

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Asunto(s)
Diabetes Mellitus Experimental , Insulina , Metabolismo de los Lípidos , Enfermedades del Sistema Nervioso Periférico , Serina , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Glicina/metabolismo , Insulina/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Serina/metabolismo , Dieta Alta en Grasa , Adiposidad , Esfingolípidos/metabolismo , Neuropatía de Fibras Pequeñas , Dislipidemias
4.
Aging Cell ; 21(9): e13666, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986566

RESUMEN

Rapamycin treatment has positive and negative effects on progression of type 2 diabetes (T2D) in a recombinant inbred polygenic mouse model, male NONcNZO10/LtJ (NcZ10). Here, we show that combination treatment with metformin ameliorates negative effects of rapamycin while maintaining its benefits. From 12 to 30 weeks of age, NcZ10 males were fed a control diet or diets supplemented with rapamycin, metformin, or a combination of both. Rapamycin alone reduced weight gain, adiposity, HOMA-IR, and inflammation, and prevented hyperinsulinemia and pre-steatotic hepatic lipidosis, but exacerbated hyperglycemia, hypertriglyceridemia, and pancreatic islet degranulation. Metformin alone reduced hyperinsulinemia and circulating c-reactive protein, but exacerbated nephropathy. Combination treatment retained the benefits of both while preventing many of the deleterious effects. Importantly, the combination treatment reversed effects of rapamycin on markers of hepatic insulin resistance and normalized systemic insulin sensitivity in this inherently insulin-resistant model. In adipose tissue, rapamycin attenuated the expression of genes associated with adipose tissue expansion (Mest, Gpam), inflammation (Itgam, Itgax, Hmox1, Lbp), and cell senescence (Serpine1). In liver, the addition of metformin counteracted rapamycin-induced alterations of G6pc, Ppara, and Ldlr expressions that promote hyperglycemia and hypertriglyceridemia. Both rapamycin and metformin treatment reduced hepatic Fasn expression, potentially preventing lipidosis. These results delineate a state of "insulin signaling restriction" that withdraws endocrine support for further adipogenesis, progression of the metabolic syndrome, and the development of its comorbidities. Our results are relevant for the treatment of T2D, the optimization of current rapamycin-based treatments for posttransplant rejection and various cancers, and for the development of treatments for healthy aging.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hígado Graso , Hiperglucemia , Hiperinsulinismo , Hipertrigliceridemia , Resistencia a la Insulina , Síndrome Metabólico , Metformina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/complicaciones , Hiperinsulinismo/complicaciones , Hipertrigliceridemia/complicaciones , Hipoglucemiantes/farmacología , Inflamación/complicaciones , Insulina/metabolismo , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Sirolimus/farmacología , Sirolimus/uso terapéutico
5.
J Clin Med ; 11(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566433

RESUMEN

Corneal confocal microscopy (CCM) is emerging as a tool for identifying small fiber neuropathy in both peripheral neuropathies and neurodegenerative disease of the central nervous system (CNS). The value of corneal nerves as biomarkers for efficacy of clinical interventions against small fiber neuropathy and neurodegenerative disease is less clear but may be supported by preclinical studies of investigational agents. We, therefore, used diverse investigational agents to assess concordance of efficacy against corneal nerve loss and peripheral neuropathy in a mouse model of diabetes. Ocular delivery of the peptides ciliary neurotrophic factor (CNTF) or the glucagon-like peptide (GLP) analog exendin-4, both of which prevent diabetic neuropathy when given systemically, restored corneal nerve density within 2 weeks. Similarly, ocular delivery of the muscarinic receptor antagonist cyclopentolate protected corneal nerve density while concurrently reversing indices of systemic peripheral neuropathy. Conversely, systemic delivery of the muscarinic antagonist glycopyrrolate, but not gallamine, prevented multiple indices of systemic peripheral neuropathy and concurrently protected against corneal nerve loss. These data highlight the potential for use of corneal nerve quantification by confocal microscopy as a bridging assay between in vitro and whole animal assays in drug development programs for neuroprotectants and support its use as a biomarker of efficacy against peripheral neuropathy.

6.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298717

RESUMEN

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Asunto(s)
Envejecimiento/metabolismo , Axones/patología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Metabolismo Energético , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Secuencia de Bases , Proteína beta Potenciadora de Unión a CCAAT/genética , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Metabolismo Energético/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Proyección Neuronal/efectos de los fármacos , Polímeros/metabolismo , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos
7.
Diabetes ; 71(6): 1272-1281, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234842

RESUMEN

We investigated the application of rate-dependent depression (RDD) of the Hoffmann (H) wave as a predictor of treatment efficacy in patients with painful diabetic peripheral neuropathy (DPN). General medical information, scales, and nerve conduction data were collected from 73 healthy subjects, 50 subjects with type 2 diabetes and painless DPN, and 71 subjects with type 2 diabetes and painful DPN. The left tibial nerve was stimulated, and RDD was calculated by the decline in amplitude of the third H wave relative to the first one. Gabapentin treatment was initiated after baseline evaluation, and the RDD and visual analog scale (VAS) score were both evaluated regularly during the 2-week study period. At baseline, the painful DPN group exhibited significant RDD impairment across all stimulation frequencies. Gabapentin treatment significantly reduced the VAS score and restored RDD during the 2-week observation period. RDD was found to be an independent factor of minimal VAS score improvement, such that the benefit increased by 1.27 times per 1% decrease in the RDD value. In conclusion, this study demonstrates that diabetes-induced loss of RDD can be modified by gabapentin and suggests that RDD may be valuable for predicting the initial efficacy of gabapentin therapy in patients with painful DPN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Depresión/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Gabapentina/uso terapéutico , Dolor
8.
J Neuroinflammation ; 19(1): 57, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35219337

RESUMEN

BACKGROUND: Peripheral neuropathy is a common and progressive disorder in the elderly that interferes with daily activities. It is of importance to find efficient treatments to treat or delay this age-related neurodegeneration. Silencing macrophages by reducing foamy macrophages showed significant improvement of age-related degenerative changes in peripheral nerves of aged mice. We previously demonstrated that activation of the cholesterol sensor Liver X receptor (LXR) with the potent agonist, GW3965, alleviates pain in a diet-induced obesity model. We sought to test whether LXR activation may improve neuropathy in aged mice. METHODS: 21-month-old mice were treated with GW3965 (25 mg/Kg body weight) for 3 months while testing for mechanical allodynia and thermal hyperalgesia. At termination, flow cytometry was used to profile dorsal root ganglia and sciatic nerve cells. Immune cells were sorted and analyzed for cholesterol and gene expression. Nerve fibers of the skin from the paws were analyzed. Some human sural nerves were also evaluated. Comparisons were made using either t test or one-way ANOVA. RESULTS: Treatment with GW3965 prevented the development of mechanical hypersensitivity and thermal hyperalgesia over time in aged mice. We also observed change in polarization and cholesterol content of sciatic nerve macrophages accompanied by a significant increase in nerve fibers of the skin. CONCLUSIONS: These results suggest that activation of the LXR may delay the PNS aging by modifying nerve-immune cell lipid content. Our study provides new potential targets to treat or delay neuropathy during aging.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Animales , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Receptores X del Hígado/agonistas , Ratones , Enfermedades del Sistema Nervioso Periférico/metabolismo , Nervio Ciático/metabolismo
9.
Neurol Sci ; 43(3): 1831-1838, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34518934

RESUMEN

OBJECTIVE: We investigated rate-dependent depression (RDD) of the Hoffman reflex (H-reflex) in patients with amyotrophic lateral sclerosis (ALS), a degenerative disease with ventral horn involvement. PATIENTS AND METHODS: In this case-control study, we enrolled 27 patients with ALS and 30 matched healthy control subjects. Clinical and electrophysiological assessments, as well as RDD in response to various stimulation frequencies (0.5 Hz, 1 Hz, 3 Hz and 5 Hz), were compared between groups. Multiple clinical and electrophysiological factors were also explored to determine any underlying associations with RDD. RESULTS: The ALS group showed a significant loss of RDD across all frequencies compared to the control group, most notably following 1 Hz stimulation (19.1 ± 20.3 vs. 34.0 ± 13.7%, p = 0.003). Among factors that might influence RDD, the enlargement of the motor unit potential (MUP) showed a significant relationship with RDD following multifactor analysis of variance (p = 0.007) and Pearson correlation analysis (ρ = - 0.70, p < 0.001), while various upper motor neuron manifestations were not correlated with RDD values (p > 0.05). CONCLUSION: We report a loss of RDD in patients with ALS. The strong correlation detected between the RDD deficit and increased MUP suggests that RDD is a sensitive indicator of underlying spinal disinhibition in ALS. TRIAL REGISTRATION: ChiCTR2000038848, 10/7/2020 (retrospectively registered), http://www.chictr.org.cn/ .


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/complicaciones , Estudios de Casos y Controles , Depresión , Fenómenos Electrofisiológicos , Humanos , Neuronas Motoras/fisiología
10.
Diagnostics (Basel) ; 11(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34359330

RESUMEN

Impaired rate-dependent depression of the Hoffman reflex (HRDD) is a potential biomarker of impaired spinal inhibition in patients with painful diabetic neuropathy. However, the optimum stimulus-response parameters that identify patients with spinal disinhibition are currently unknown. We systematically compared HRDD, performed using trains of 10 stimuli at five stimulation frequencies (0.3, 0.5, 1, 2 and 3 Hz), in 42 subjects with painful and 62 subjects with painless diabetic neuropathy with comparable neuropathy severity, and 34 healthy controls. HRDD was calculated using individual and mean responses compared to the initial response. At stimulation frequencies of 1, 2 and 3 Hz, HRDD was significantly impaired in patients with painful diabetic neuropathy compared to patients with painless diabetic neuropathy for all parameters and for most parameters when compared to healthy controls. HRDD was significantly enhanced in patients with painless diabetic neuropathy compared to controls for responses towards the end of the 1 Hz stimulation train. Receiver operating characteristic curve analysis in patients with and without pain showed that the area under the curve was greatest for response averages of stimuli 2-4 and 2-5 at 1 Hz, AUC = 0.84 (95%CI 0.76-0.92). Trains of 5 stimuli delivered at 1 Hz can segregate patients with painful diabetic neuropathy and spinal disinhibition, whereas longer stimulus trains are required to segregate patients with painless diabetic neuropathy and enhanced spinal inhibition.

11.
Diabetes Care ; 44(8): 1835-1841, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34385346

RESUMEN

OBJECTIVE: Impaired rate-dependent depression of the Hoffman reflex (HRDD) is a marker of spinal inhibitory dysfunction and has previously been associated with painful neuropathy in a proof-of-concept study in patients with type 1 diabetes. We have now undertaken an assessment of HRDD in patients with type 1 or type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 148 participants, including 34 healthy control subjects, 42 patients with painful diabetic neuropathy, and 62 patients with diabetic neuropathy without pain, underwent an assessment of HRDD and a detailed assessment of peripheral neuropathy, including nerve conduction studies, corneal confocal microscopy, and thermal threshold testing. RESULTS: Compared with healthy control subjects (P < 0.001) and patients without pain (P < 0.001), we found that HRDD is impaired in patients with type 1 or type 2 diabetes with neuropathic pain. These impairments are unrelated to diabetes type and the presence or severity of neuropathy. In contrast, patients without neuropathic pain (P < 0.05) exhibited enhanced HRDD compared with control subjects. CONCLUSIONS: We suggest that loss or impairment of HRDD may help to identify a subpopulation of patients with painful diabetic neuropathy mediated by impaired spinal inhibitory systems who may respond optimally to therapies that target spinal or supraspinal mechanisms. Enhanced RDD in patients without pain may reflect engagement of spinal pain-suppressing mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Neuralgia , Córnea , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Neuralgia/diagnóstico , Neuralgia/etiología
12.
Front Neurol ; 12: 663373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211430

RESUMEN

HIV-associated distal sensory polyneuropathy (HIV-DSP) affects about one third of people with HIV and is characterized by distal degeneration of axons. The pathogenesis of HIV-DSP is not known and there is currently no FDA-approved treatment. HIV trans-activator of transcription (TAT) is associated with mitochondrial dysfunction and neurotoxicity in the brain and may play a role in the pathogenesis of HIV-DSP. In the present study, we measured indices of peripheral neuropathy in the doxycycline (DOX)-inducible HIV-TAT (iTAT) transgenic mouse and investigated the therapeutic efficacy of a selective muscarinic subtype-1 receptor (M1R) antagonist, pirenzepine (PZ). PZ was selected as we have previously shown that it prevents and/or reverses indices of peripheral neuropathy in multiple disease models. DOX alone induced weight loss, tactile allodynia and paw thermal hypoalgesia in normal C57Bl/6J mice. Conduction velocity of large motor fibers, density of small sensory nerve fibers in the cornea and expression of mitochondria-associated proteins in sciatic nerve were unaffected by DOX in normal mice, whereas these parameters were disrupted when DOX was given to iTAT mice to induce TAT expression. Daily injection of PZ (10 mg/kg s.c.) prevented all of the disorders associated with TAT expression. These studies demonstrate that TAT expression disrupts mitochondria and induces indices of sensory and motor peripheral neuropathy and that M1R antagonism may be a viable treatment for HIV-DSP. However, some indices of neuropathy in the DOX-inducible TAT transgenic mouse model can be ascribed to DOX treatment rather than TAT expression and data obtained from animal models in which gene expression is modified by DOX should be accompanied by appropriate controls and treated with due caution.

14.
Diagnostics (Basel) ; 11(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670344

RESUMEN

Impaired rate-dependent depression (RDD) of the spinal H-reflex occurs in diabetic rodents and a sub-set of patients with painful diabetic neuropathy. RDD is unaffected in animal models of painful neuropathy associated with peripheral pain mechanisms and diabetic patients with painless neuropathy, suggesting RDD could serve as a biomarker for individuals in whom spinal disinhibition contributes to painful neuropathy and help identify therapies that target impaired spinal inhibitory function. The spinal pharmacology of RDD was investigated in normal rats and rats after 4 and 8 weeks of streptozotocin-induced diabetes. In normal rats, dependence of RDD on spinal GABAergic inhibitory function encompassed both GABAA and GABAB receptor sub-types. The time-dependent emergence of impaired RDD in diabetic rats was preceded by depletion of potassium-chloride co-transporter 2 (KCC2) protein in the dorsal, but not ventral, spinal cord and by dysfunction of GABAA receptor-mediated inhibition. GABAB receptor-mediated spinal inhibition remained functional and initially compensated for loss of GABAA receptor-mediated inhibition. Administration of the GABAB receptor agonist baclofen restored RDD and alleviated indices of neuropathic pain in diabetic rats, as did spinal delivery of the carbonic anhydrase inhibitor acetazolamide. Pharmacological manipulation of RDD can be used to identify potential therapies that act against neuropathic pain arising from spinal disinhibition.

15.
Diabetes Metab J ; 45(1): 27-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307618

RESUMEN

The worldwide diabetes epidemic is estimated to currently afflict almost 500 million persons. Long-term diabetes damages multiple organ systems with the blood vessels, eyes, kidneys and nervous systems being particularly vulnerable. These complications of diabetes reduce lifespan, impede quality of life and impose a huge social and economic burden on both the individual and society. Peripheral neuropathy is a debilitating complication that will impact over half of all persons with diabetes. There is no treatment for diabetic neuropathy and a disturbingly long history of therapeutic approaches showing promise in preclinical studies but failing to translate to the clinic. These failures have prompted re-examination of both the animal models and clinical trial design. This review focuses on the functional and structural parameters used as indices of peripheral neuropathy in preclinical and clinical studies and the extent to which they share a common pathogenesis and presentation. Nerve conduction studies in large myelinated fibers have long been the mainstay of preclinical efficacy screening programs and clinical trials, supplemented by quantitative sensory tests. However, a more refined approach is emerging that incorporates measures of small fiber density in the skin and cornea alongside these traditional assays at both preclinical and clinical phases.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Animales , Córnea , Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/epidemiología , Humanos , Fibras Nerviosas , Calidad de Vida , Piel
16.
Expert Rev Neurother ; 21(1): 45-63, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161784

RESUMEN

Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson's disease, Huntington's disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Fármacos Neuroprotectores , Proteínas Quinasas Activadas por AMP , Animales , Humanos , Metformina/uso terapéutico , Neuronas , Fármacos Neuroprotectores/uso terapéutico
17.
Proc Natl Acad Sci U S A ; 117(42): 26482-26493, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020290

RESUMEN

Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Obesidad/microbiología , Enfermedades del Sistema Nervioso Periférico/terapia , Animales , Butiratos/metabolismo , Dieta Alta en Grasa , Dieta Occidental , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microbiota , Neuralgia/metabolismo , Obesidad/fisiopatología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología
18.
Pain ; 161(Suppl 1): S65-S86, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32999525

RESUMEN

Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/psicología , Neuralgia/etiología , Calidad de Vida/psicología , Animales , Glucemia/metabolismo , Neuropatías Diabéticas/complicaciones , Intolerancia a la Glucosa/complicaciones , Humanos , Dolor/etiología , Dimensión del Dolor
20.
J Pharmacol Exp Ther ; 374(1): 44-51, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32327528

RESUMEN

Muscarinic antagonists promote sensory neurite outgrowth in vitro and prevent and/or reverse multiple indices of peripheral neuropathy in rodent models of diabetes, chemotherapy-induced peripheral neuropathy, and HIV protein-induced neuropathy when delivered systemically. We measured plasma concentrations of the M1 receptor-selective muscarinic antagonist pirenzepine when delivered by subcutaneous injection, oral gavage, or topical application to the skin and investigated efficacy of topically delivered pirenzepine against indices of peripheral neuropathy in diabetic mice. Topical application of 2% pirenzepine to the paw resulted in plasma concentrations 6 hours postdelivery that approximated those previously shown to promote neurite outgrowth in vitro. Topical delivery of pirenzepine to the paw of mice with streptozotocin-induced diabetes dose-dependently (0.1%-10.0%) prevented tactile allodynia, thermal hypoalgesia, and loss of epidermal nerve fibers in the treated paw and attenuated large fiber motor nerve conduction slowing in the ipsilateral limb. Efficacy against some indices of neuropathy was also noted in the contralateral limb, indicating systemic effects following local treatment. Topical pirenzepine also reversed established paw heat hypoalgesia, whereas withdrawal of treatment resulted in a gradual decline in efficacy over 2-4 weeks. Efficacy of topical pirenzepine was muted when treatment was reduced from 5 to 3 or 1 day/wk. Similar local effects were noted with the nonselective muscarinic receptor antagonist atropine when applied either to the paw or to the eye. Topical delivery of muscarinic antagonists may serve as a practical therapeutic approach to treating diabetic and other peripheral neuropathies. SIGNIFICANCE STATEMENT: Muscarinic antagonist pirenzepine alleviates diabetic peripheral neuropathy when applied topically in mice.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Antagonistas Muscarínicos/administración & dosificación , Antagonistas Muscarínicos/farmacología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/prevención & control , Administración Tópica , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA